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Abstract— A novel approach of multivariable fuzzy pre-
dictive functional control is presented. The control law is
derived in the state-space domain, and given in an analytical
form. The method was tested on a model of a 2-by-2 MIMO
nonlinear plant, and compared to the control system using
gain-scheduling of a linear dynamic compensator. The process
was linearized in 63 operating points, and the compensator pa-
rameters were optimized using Edmunds’ frequency-response-
based technique. The results show that the proposed approach
exhibits better reference-model tracking in a wider operating
range, even without the use of optimization.

I. I NTRODUCTION

In recent years model based predictive control has re-
ceived a lot of attention in the control theory and appli-
cations. A model of the controlled process provides the
forecast of the process output signal, and the control signal
is calculated in every step in a way that the difference
between the reference and the output signal is minimized.
The fundamental methods are essentially based on the prin-
ciple of predictive control by Clarke (generalized predictive
control [3]), Richalet (predictive functional control [14]),
Cutler (dynamic matrix control [4]), De Keyser (extended
prediction self-adaptive control [5]) and Ydstie (extended
horizon adaptive control [21]).

The majority of industrial plants is multivariable in
nature, i.e., there are many output variables to be controlled,
and more than one input variable is coupled with the
outputs. When the interactions are not negligible, some
type of multivariable control has to be applied to achieve
satisfactory performance of the closed-loop system. Process
control of the truly multivariable systems has been exten-
sively studied in the literature [15], [12], [11]. Leithead
and O’Reilly presented an approach where by designing
decoupling compensators the interactions are diminished
and common univariable controllers are sufficient to pro-
vide quality control [9]. Edmunds proposed a frequency-
based method of the multivariable-compensator tuning [7].
Some robust multivariable methods are presented in [13].
However, if the process to be controlled exhibits nonlinear
behaviour several of the above mentioned methods will
not provide satisfactory results. To tackle nonlinear process
control, a fair number of methods including fuzzy models
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[6], [1], neural networks [16], fuzzy-adaptive sliding-mode
approach [18], and gain-scheduling-based linear compen-
sators [10] have been proposed. Furthermore, over the
last few decades a substantial amount of work has been
dedicated to various linearizing feedback approaches, see
e.g. [8]. Nevertheless, a lot of problems when providing
the analytical control schemes are still open.

This paper presents a novel control method for
MIMO nonlinear systems. The predictive functional con-
trol method, presented in [19], was extended to nonlinear
systems. In [20] a similar approach was used to tackle
univariable-system control problems. The basis of the mul-
tivariable fuzzy predictive functional control approach (MF-
PFC) is to build a fuzzy model of a process, formulate it
in the state-space domain, and connect it in parallel to the
process. Reformulation in the state-space domain will lead
to a simple control-law solution. The fuzzy input-output
relations provide instant linearization of the model param-
eters, and the model states and outputs are directly used
in an analytically-derived predictive control law. This way,
satisfactory control can be extended to a wider operating
range without the help of optimization.

The paper is organized in the following way. In Section
2 the derivation of the MFPFC control law is given. In
the following section the proposed method is tested on a
simulation experiment, and compared to Edmunds’ control
approach with gain-scheduling. Section 4 gives the conclu-
sions and some future directions.

II. D ERIVATION OF MULTIVARIABLE FUZZY PREDICTIVE

FUNCTIONAL CONTROL LAW

A nonlinear system with multiple inputs and outputs is
given by

ẋ(t) = ξ(x,u, t)
y(t) = f(x, t),

(1)

wherex ∈ Rn is the vector of states,u ∈ Rm is the input
vector,y ∈ Rl denotes the output vector,ξ : Rn × Rm ×
R+ → Rn is a smooth vector field representing a nonlinear
function of the states and the inputs, andf : Rn×R+ → Rl

is the output function. To be able to derive a fuzzy model
of the system, the following assumption will be considered
throughout the paper:

Assumption 1: The system states are bounded for any
combination of the system inputs from some compact do-
main of interest, i.e.,x(t) ∈ L∞, ∀t ≥ 0, ∀u ∈ U

The fuzzy model of the system is described by rules [17]
which locally describe linear input-output relations of the



system in the state-space domain:

Rj : if xp1(k) is Pj,1 and . . . and xpq(k) is Pj,q

then xm(k+1) = Am,jxm(k) + Bm,ju(k) + rj(k)
(2)

The q-element vectorxT
p (k) = [xp1(k), ..., xpq(k)] denotes

the input or variables in premise, andj = 1, . . . , n is the
number of rules. With each variable in premisexpi(k) j
fuzzy sets (Pi,1, . . . ,Pi,j) are connected, and each fuzzy
set Pi,ki (ki = 1, . . . , j) is associated with a real-valued
functionµPi,ki

(xpi) : R→ [0, 1] that produces membership
grade of the variablexpi with respect to the fuzzy setPi,ki

.
Am,j andBm,j are the system model state-space matrices,
andrj(k) are the associated residual vectors. The variables
xpi are not the only inputs of the fuzzy system. Implicitly,
the r-element vectorxm(k)T = [xm,1(k), ..., xm,r(k)] also
represents the input to the system. It is usually referred to
as the consequence vector.

The whole output of the system is given by the following
equation:

xm(k + 1) =

n∑
j=1

q∏
i=1

µPi,j (xpi)φφφ(x,u, r, k)

n∑
j=1

q∏
i=1

µPi,j (xpi)
,

φφφ(x,u, r, k) = Am,jx(k) + Bm,ju(k) + r(k).

(3)

To simplify (3), a partition of unity is considered where
functionsβj(xp) defined by

βj(xp) =

q∏
i=1

µPi,j (xpi)

n∑
j=1

q∏
i=1

µPi,j (xpi)
(4)

give information about the fulfilment of the respective
fuzzy rule in the normalized form. It is obvious that∑m

j=1 βj(xp) = 1 irrespective ofxp as long as the de-
nominator ofβj(xp) is not equal to zero (that can be easily
prevented by stretching the membership functions over the
whole potential area ofxp).

Combining (3) and (4), the fuzzy model in the state-space
domain can be described as a response to the system input
vectoru(k)

xm1(k+1) =
m∑

j=1

βj(xp) [Am,jxm1(k) + Bm,ju(k)]

ym1(k) =
m∑

j=1

βj(xp)Cm1,jxm1(k) (5)

and to the system residual vectorr(k)

xm2(k+1) =
m∑

j=1

βj(xp) [Am,jxm2(k) + Bmrr(k)]

ym2(k) =
m∑

j=1

βj(xp)Cm2,jxm2(k), Bmr = I. (6)

The system output is then given as a sum of the responses

ym(k) = ym1(k) + ym2(k). (7)

The control goal is to determine the future control action so
that the predicted output values coincide with the reference
trajectories. The point where the reference and output signal
coincide is called a coincidence horizon, and is denoted by
H. The reference model trajectory in the state space domain
is given by

xr(k + 1) = Arxr(k) + Br(k)w(k)
yr(k) = Crxr(k).

(8)

The reference model parameters should be chosen to fulfil
the conditionCr(I−Ar)−1Br = I to enable the reference
trajectory tracking, i.e., the steady-state gain of the reference
model should be equal to one. One way to accomplish this
is to define

Br = I−Ar

Cr = I.
(9)

The prediction is calculated under the assumption of con-
stant future manipulated variables (u(k) = u(k+1) = . . . =
u(k + H − 1)), i.e., the mean level control, and under the
assumption of constantβj , j = 1, ...,m through the whole
prediction horizon. Under those assumptions, theH-step
ahead prediction of the system and reference model output,
respectively, at time instantk is obtained as:

ym1(k + H|k) = C̃m1

(
ÃH

mxm1(k) + K̃m1u(k)
)

ym2(k + H|k) = C̃m2

(
ÃH

mxm2(k) + K̃m2r̃(k)
) (10)

yr(k + H|k) = Cr

(
AH

r xr(k) + K̃rw(k)
)

, (11)

where

K̃m1 =
(
ÃH

m − I
)(

Ãm − I
)−1

B̃m1

K̃m2 =
(
ÃH

m − I
)(

Ãm − I
)−1

B̃mr

K̃r =
(
AH

r − I
)
(Ar − I)−1 B̃r

Ãm =
m∑

j=1

βj(xp(k))Am,j , B̃m =
m∑

j=1

βj(xp(k))Bm,j

C̃m1 =
m∑

j=1

βj(xp(k))Cm1, C̃m2 =
m∑

j=1

βj(xp(k))Cm2

r̃ =
m∑

j=1

βj(xp(k))rj

The main idea of the MFPFC is the equivalence of the
process objective increment and the process model output
increment at a certain horizon. The process objective incre-
ment∆∆∆p is defined as the difference between the predicted



reference trajectoryyr(k + H|k) and the actual process
output signalyp(k)

∆∆∆p = yr(k + H|k)− yp(k)

∆∆∆p = Cr

(
AH

r xr(k) + K̃rw(k)
)
− yp(k),

(12)

and the model output increment can be written analogously
using (7)

∆∆∆m = ym(k + H|k)− ym(k)
∆∆∆m = ym1(k + H|k) + ym2(k + H|k)− ym.

(13)

The control law of the MFPFC in explicit analytical form
is obtained by assuming the equivalence of the increments

∆∆∆p = ∆∆∆m, (14)

and using (10), (11), (12), and (13):

u(k) = K̃−1
m1

(
yr(k + H|k)− C̃m1ÃH

mxm1(k)
− ym2(k + H|k) + ym(k)− yp(k)

)
(15)

Note that the control law (15) is realizable if the matrix
Km1 is non-singular.

III. S IMULATION EXAMPLE

A. Tuning of the MFPFC

The proposed method was tested on a two-input two-
output nonlinear system given by (16).

ẏ1 = −2y1 + 0.3
y1

y2
+ 0.7y2 + 5

√
u1

ẏ2 = −0.8y1 + 3y1 · 0.5y2 − 0.8y2 + 7
√

u2

(16)

Firstly, a fuzzy model was built from the input-output
identification data. Fig. 1 and Fig. 2 show the input and the
associated output signals. Sampling time wasTs = 0.02
s, and the number of the input-output data pairs for each
process output was 10000. Using Gustafson-Kessel clus-
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Fig. 1. Input identification data

tering method [2], the fuzzy parameters of the local linear
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Fig. 2. Output identification data

TABLE I

MODEL PARAMETERS OF THE FIRST FUZZY-MODEL OUTPUT

y1(k) y2(k) u1(k) u2(k) r(k)
P1,i 0.9369 0.0227 0.0730 0.0024 0.0924
P2,i 0.9711 0.0166 0.0222 -0.0014 0.0465
P3,i 0.9638 -0.0044 0.0222 0.0001 0.1461
P4,i 0.9814 0.0947 0.0211 -0.0076 -0.0502
P5,i 0.9628 -0.0464 0.0139 0.0013 0.2014

models in 5 fuzzy subsets were established. Antecedent
vector consisted of four elements, the process outputs and
inputs ink-th step,xT

p (k) = [y1(k), y2(k), u1(k), u2(k)].
Tables I and II give the obtained model parameters that
multiply the associated elements of the consequent vector
xT

m(k) = [ym1(k), ym2(k), u1(k), u2(k), r(k)]. In Fig.
3 the results of the model verification are presented. The
variances for the first and second model outputs were 0.0114
and 0.0030, respectively.

B. PI compensator method using the Edmunds’ tuning
technique and gain-scheduling

The proposed method will be compared to a combination
of a classical multivariable PI-controller-tuning technique
and gain-scheduling, as presented in [10]. The system, given
by (16), was first linearized at 63 selected operating points
throughout the complete operating range. The operating

TABLE II

MODEL PARAMETERS OF THE SECOND FUZZY-MODEL OUTPUT

y1(k) y2(k) u1(k) u2(k) r(k)
P1,i -0.0513 0.9228 0.0054 0.0159 0.2626
P2,i -0.0423 0.8697 -0.0053 0.0246 0.3194
P3,i -0.0167 0.7905 -0.0050 0.0480 0.1422
P4,i -0.0575 0.7769 -0.0039 0.0247 0.4954
P5,i -0.0197 0.8904 0.0053 0.0187 0.0971
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Fig. 3. Verification of the model outputs

points were selected based on the system outputs. Edmunds’
method [7] was then used to design a linear multivariable PI
compensator for each operating point. The compensator pa-
rameters were obtained by optimization based on the model
and desired process frequency responses. The objective of
this method is to design a simple robust controller, which
achieves a desired performance criteria. The drawback is
in the time-consuming procedure of defining the operating
points, linearization and optimization of parameters.

The tuning parameters were a first-order reference model
time constant ofTref = 0.25 s and a closed-loop frequency
band ofω = [10−2 , 104]. The scheduling variables were
the process outputsy1 and y2. The obtained compensator
parameterskPij and kIij , i, j ∈ {1, 2} are presented in
Fig. 4 and Fig. 5.
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Fig. 4. Parameters of the proportional part of the Edmunds’ compensator
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Fig. 5. Parameters of the integral part of the Edmunds’ compensator

C. Comparison of the results

The parameters for the MFPFC controller are the refe-
rence model matrix

Ar =
[

0.92 0
0 0.92

]
, (17)

and horizonH = 10. The parameters of the reference
model were chosen according to the reference-model time
constant of the Edmunds’ controller. In Fig. 6 to Fig. 9 the
results of the comparison of reference tracking experiment
and the associated input signals are given. It can be seen
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Fig. 6. Comparison of reference tracking for the first output

that both approaches gave satisfactory results in reference
tracking. To consider the differences, let us take a closer
look to the transients of the second output when reference
is descending (Fig. 10) and ascending (Fig. 11). It can
be seen that the MFPFC exhibits fairly equal transient
responses in different operating points, while the transients
of the gain-scheduling Edmunds’ controller ”suffer” slightly
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Fig. 10. Transients in tracking of the descending reference
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Fig. 11. Transients in tracking of the ascending reference

from operating condition change. In the case of the output-
disturbance rejection, following the reference changes in the
opposite process input, the proposed method provided better
results for the second output while the Edmunds’ method
gave better results for the first one. In general, the advantage
of the MFPFC is a quality control in a wide operating range
without the explicit use of optimization because the control
law is given analytically.

IV. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

A novel approach of nonlinear multivariable control was
presented. For a MIMO nonlinear system a fuzzy model was
built and used in a multivariable fuzzy predictive functional
control scheme. The control law was derived in the state
space domain and given in an analytical form. The method
was tested on a model of a 2-by-2 multivariable nonlinear
plant, and compared to the gain-scheduling-based linear



dynamic compensator using Edmunds’ optimization tech-
nique. The results show that the proposed approach exhibits
better reference-model tracking in a wider operating range,
even without the explicit use of optimization, and provides
a simple and effective method of tackling the control of
nonlinear multivariable systems.

B. Future Works

Based upon the results, studying the effects of the MF-
PFC design-parameter choice, parallel distribution of the
control law, and stability issues deserve further attention.
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